2.2a nonlinear difference equations

Sunday, January 24, 2021 10:51 PM

Def 2.1 For the lot difference equation / [st - order system,

$$x_{t+1} = f(x_t)$$
, $X(t+1) = F(X(t))$
an equilibrium solution or steady-state solution is a constant
solution \overline{x} to the difference equation. i.e. (\overline{x})
 $\overline{x} = f(\overline{z})$ $\overline{X} = F(\overline{x})$
 $\overline{x} = f(\overline{z})$ $\overline{X} = F(\overline{x})$
 \overline{x} and \overline{X} are fixed pts of respectively f or \overline{F} .
Notation: Let $f^{t}(x_0) = formon(x_0)$, So, if $x_{t+1} = f(x_t)$, then $f'(x_0) = x_t$
 t thus.
Def. 2.2 A periodic solution of period $m > 1$ of a difference eq
 $x_{t+1} = f(x_t)$ is a real-valued sol \overline{x}_{K} satisfying
 $f^{m}(\overline{x}_{k}) = \overline{x}_{K}$ and $f^{t}(\overline{x}_{K}) = \overline{x}_{K}$ for $\hat{c} = 1_{j-m}, m^{-1}$
An m -cycle is a set of pts $\{\overline{x}_{j,m}, \overline{x}_{m}\}$ where $f(\overline{x}_{k}) = \overline{x}_{k+1}$
and each pt \overline{x}_{k} for $k = 1_{2m}, m$ is a periodic solution of period m .
The set $\{\overline{x}_{x}, f(\overline{x}), ..., f^{m-1}(\overline{x}_{x})\}$ is the periodic orbit of \overline{x}_{x} .
Similar definitions the a first-order system $X(t+1) = F(X(t))$
Aside: If \overline{x}_{k} is a first order of f^{m} , f^{2m} , f^{2m} , ...
Aside: By def., a solution of period m can't have period $k < m$.
Def. 23a An equilibrium solution \overline{x} of $x_{t+1} = f(x_{t})$ is locally solution
if $\Psi \ge 0$, $\exists \le > 0$ s,t. if $|x_{t} = \overline{x}| < \$$, then

if
$$\forall z > 0$$
, $\exists S > 0$ s.t. if $|x_0 - \overline{x}| < \delta$, then
 $|x_t - \overline{x}| = |f^t(x_0) - \overline{x}| < \delta$, $\forall t \ge 0$.
If \overline{x} is not slable, then it is unstable.
Pol. 2.3b An equilibrium solution \overline{x} of $x_{t+1} = f(x_t)$ is locally attracting
if $\exists Y > 0$ s.t. for all x_0 s.t. $|x_0 - \overline{x}| < \gamma$.
I in $x_t = \lim_{t \to \infty} f^t(x_0) = \overline{x}$
Pol. 2.3c. The equilibrium solution \widehat{x} is locally asymptotically stable
if it is both locally attracting and locally stable.
Important: It is possible to be locally attracting but not locally stable.
Important: It is possible to be locally stable but not locally attracting.